Desflurane preconditioning induces time-dependent activation of protein kinase C epsilon and extracellular signal-regulated kinase 1 and 2 in the rat heart in vivo.

نویسندگان

  • Octavian Toma
  • Nina C Weber
  • Jessica I Wolter
  • Detlef Obal
  • Benedikt Preckel
  • Wolfgang Schlack
چکیده

BACKGROUND Activation of protein kinase C epsilon (PKC-epsilon) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) are important for cardioprotection by preconditioning. The present study investigated the time dependency of PKC-epsilon and ERK1/2 activation during desflurane-induced preconditioning in the rat heart. METHODS Anesthetized rats were subjected to regional myocardial ischemia and reperfusion, and infarct size was measured by triphenyltetrazoliumchloride staining (percentage of area at risk). In three groups, desflurane-induced preconditioning was induced by two 5-min periods of desflurane inhalation (1 minimal alveolar concentration), interspersed with two 10-min periods of washout. Three groups did not undergo desflurane-induced preconditioning. The rats received 0.9% saline, the PKC blocker calphostin C, or the ERK1/2 inhibitor PD98059 with or without desflurane preconditioning (each group, n = 7). Additional hearts were excised at four different time points with or without PKC or ERK1/2 blockade: without further treatment, after the first or the second period of desflurane-induced preconditioning, or at the end of the last washout phase (each time point, n = 4). Phosphorylated cytosolic PKC-epsilon and ERK1/2, and membrane translocation of PKC-epsilon were determined by Western blot analysis (average light intensity). RESULTS Desflurane significantly reduced infarct size from 57.2 +/- 4.7% in controls to 35.2 +/- 16.7% (desflurane-induced preconditioning, mean +/- SD, P < 0.05). Both calphostin C and PD98059 abolished this effect (58.8 +/- 13.2% and 64.2 +/- 15.4% respectively, both P < 0.05 versus desflurane-induced preconditioning). Cytosolic phosphorylated PKC-epsilon reached its maximum after the second desflurane-induced preconditioning and returned to baseline after the last washout period. Both calphostin C and PD98059 inhibited PKC-epsilon activation. ERK1/2 phosphorylation reached its maximum after the first desflurane-induced preconditioning and returned to baseline after the last washout period. Calphostin C had no effect on ERK1/2 phosphorylation. CONCLUSIONS Both, PKC and ERK1/2 mediate desflurane-induced preconditioning. PKC-epsilon and ERK1/2 are both activated in a time dependent manner during desflurane-induced preconditioning, but ERK1/2 activation during desflurane-induced preconditioning is not PKC dependent. Moreover, ERK1/2 blockade abolished PKC-epsilon activation, suggesting ERK-dependent activation of PKC-epsilon during desflurane-induced preconditioning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-13: Na+/K+-ATPase Alpha1 Isoform Mediates Ouabain-Induced Expression of Cyclin D1 and Proliferation of Rat Sertoli Cells

Background: Novel roles for the interaction of cardiotonic steroids to Na+/K+-ATPase have been established in recent years. The aim of the present study was to investigate the intracellular signaling events downstream the action of ouabain on Na+/K+-ATPase in Sertoli cell obtained from immature rats. Treatment of Sertoli cells with ouabain (1 μM) induced a rapid and transient increase in the ex...

متن کامل

Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells

Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes.  This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...

متن کامل

Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells

Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes.  This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...

متن کامل

Effect of pre-treatment with oxytocin on cardiac enzymes in regional ischemiareperfusion injury induced in the rat heart

Introduction: Cardiac preconditioning represents the most potent and consistently reproducible method of rescuing heart tissue from undergoing irreversible ischemic damage. The aim of the present study was to evaluate oxytocin (OT) induced cardioprotection and its signaling pathways on lactate dehydrogenase (LDH) and creatine kinase-MB isoenzyme (CK-MB) in the anesthetized rats. Methods: Ei...

متن کامل

Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression

Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Anesthesiology

دوره 101 6  شماره 

صفحات  -

تاریخ انتشار 2004